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Abstract: In this paper, the rigid cylindrical rollers, with rolling and normal squeezing motions, lubricated 

by a power law fluid are studied under the adiabatic boundary conditions. The consistency of the lubricant 

assumed to vary exponentially with pressure and mean temperature. By solving the modified Reynolds and 

Heat equations simultaneously to get pressures and temperatures. Different characteristics of roller 

bearings are analyzed and discussed. A non- uniform grid was employed to achieve more accurate 

predictions of pressure and temperature, especially in the high pressure region. The detailed analyze of  the 

theoretical results obtained herein seems to suggest that the temperature dependence of the lubricant 

viscosity causes a reduction in both the load carrying capacity and surface traction of the system ,  whereas 

the normal squeezing motion leads to a substantial increase in pressure and also displaces the pressure peak 

towards the centre line of contact. Also results are compared with previous findings. 
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I. INTRODUCTION 

Machines have made our life a sophisticated one. Modernism has absolutely changed our life style. Along 

with machines, man too work twenty-four hours on shift basis. Like our physique, the machine too emit heat at 

work. Rest is the remedy to man but machines demand lubricant as remedy. Lubrication maximizes the life of the 

roller bearing. Dowson[1] was pioneer to propose a bond between relative film thickness and the capacity of the 

contacting surface to tolerate pitting. The efforts to propose Sigmoid curve by Lin et al.[2] was experimentally 

demonstrated by Skurka[3] and Danner[4]. 

 

In the beginning, grease was used as lubricant without oil circulation system and filtering. Wilson[5] 

proposed experiments for roller bearing via electrical capacitance measurements. He calculated film thickness to 

radially loaded double row spherical roller and single-row cylindrical roller. Later, “Lubcheck” device for 

surveying lubrication was delivered by Heemskerk et al[6]. This method was also relied upon electrical 

capacitance measurement. The probability of asperity contacts was calculated by using grease or oil in radially 

loaded deep- groove bell bearing. Later, the same device was used by Leenders and Houpert[7] and Wikstrom and 
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Jackobson for spherically roller bearings. Wardle et al.[8] and Jacobson used the same Lubcheck apparatus to 

experiment with  refrigerant-lubricant mixture and Masen et al.[9] used it intwo-disc test rig to study surface 

micro-geometry on film formation. 

 

Franke and Poll [10] exploited the capacitance technique to assess the speed, temperature and friction 

torque of the lubrication condition. This test was conducted using angular contact ball bearings with ten test grease 

lubrication. The lubrication in ball-on-flat and the lubrication in roller bearing is not similar. In roller bearing the 

lubricant flows fully inside the bearing. The level of starvation, the contact area geometry, and the dynamics of the 

rollers and cage, all has reasonable effect upon the film thickness. This is not possible in ball and disc model (Lugt 

[11]). Murer et al. [12] studied the load distribution in roller bearing using electrical capacitance. Schnabel and 

company [13] delivered that in mixed regime the character of contact capacitance is not clear. And it has to be 

augmented to know the additives play in impedance measurement. Recently, Jablonka et al.[14] used chromium-

coated glass disc to assess the lubricant film thickness via optical interferometry and electrical capacitance. He 

experimented with 7 steel balls. Six ceramic balls(silicon nitrate) replaced the six steel balls. Because of the non- 

conductive character of silicon nitrate, the obtained figure responds to the film thickness between the steel balls 

and the rings. 

 

A known fact is that lubricant failure is the primary cause of the failure of the bearing. Further, it is hard 

to calculate the life and properties of the fresh grease. The ageing can be classified both in terms of mechanical 

and chemical. It is quite natural to witness physical and chemical changes at high temperature operation due to 

mechanical and thermal stress. The way these changes affect the film is not clear. Still it is said that bearings fail 

at the cause of lubrication failure rather than surface fatigue [15] 

 

Dowson[16] demonstrated that film thickness has a direct effect on steady-state wear rare for metal-on- 

metal joints tested in a hip joint simulator. When the film thickness increases the steady-state wear rate decreases 

in magnitude. Though the correlation is surprising, the strongest correlation would be with the lambda ratio 

provided the phenomenon is credited to asperity interactions. It is learnt that modern production techniques make 

sure that after bedding-in roughness and the surface form of several implants show same result, regardless of 

diameter, material design and clearance. 

 

Cann [17] considered on the ball on disc test rig to bring relationship between starved film thickness and 

different temperatures. To study the above said point he used lithium grease. It was realized that film thickness 

decreased faster at high speed. At the same time reflow was stronger at lower speed and higher temperature. 

Further Cann[18] discovered that starvation was more when lithium grease of high thickener concentration and 

base oil viscosity was used. Hurley et al.[19] from his studies suggested that thermally aged and heavily aged 
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lithium grease gave higher film thickness. Couronne et al.[20] tested 4 different grease using a ball on disc and 

showed 2 out of 4 lubricant showed increase and then decrease in film thickness. 

 

In this present paper analysis is fully focused to examine the qualitative behavior of thermal effects on non- 

Newtonian power law lubrication of two heavily loaded rigid cylindrical roller bearings underneath adiabatic and 

isothermal boundaries. The lubricant consistency variation assumed to vary along with the pressure and the mean 

film temperature. The rolling ratio are used to study the rolling/ sliding effects of surfaces on the pressure, the 

temperature and the lubricant consistency along with load and traction. however, the effects of compressibility 

and surface roughness are neglected. 

 

II. MATHEMATICAL ANALYSIS 

 

 

Fig 1: Lubrication of cylindrical rollers  

The governing equations for the one dimensional fluid flow are [21] 

 

dp  
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  0 . (2) 

 

Where the shear stress relation for this case is 

 

n 1 
u
 

  m . (3) 
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The consistency m of the above power- law is taken as: 
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m  m0e     m  
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Where the mean temperature Tm is defined as 
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) 

u and v are the velocity components in x and y directions and p and T are the hydrodynamics 

pressure and the temperature respectively. 

The boundary conditions for the equations (1) and (2) are 
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Integrating equation (1) using the boundary conditions mentioned above, one may get f 
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The energy equation for the one dimensional flow case may be assumed to be 
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Where k is the heat conduction of the fluid and is assumed to be constant. 
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This above equation (10) is solved under boundary conditions mentioned above and is obtained 

with dimensionless scheme 
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The tangential load is given 

[22] by 
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    dx 

 

 

 

 

(18) 

the surface traction force 𝑇𝐹 , obtained from the integration of shear stress 𝜏  over  the entire 

length , may be written as 
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Then, the dimensionless traction may be written as 
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Finally, one can get the consistency expression in the form 
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III. RESULT AND DISCUSSION 
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Calculation for a semi analytical solution of the Reynolds equations (7,8) and the heat energy 

equations(12,13) is done using the values below: 

  

U = 4 m/s;  R = 0.03 m; -0.09 < q < 0.09; 0.4   n    1.15; T01   = 8; T = 3;  = 4; h = 6 x 10 5 

m; 

0 0 

 = 6 x10 8 pa 1 m 2 

3.1 Pressure Profile – 

Figures 2 and 3 show the distribution of pressure p is a function of U and ‘n’. In figure 2 

it could be seen  the pressure profile p increases mostly with rolling ratio U for different n. In 

figure 3 it could be seen that p 

increases with different  with  fixed n. This module was displayed by Hajishafiee et al. [23] and 

Tobais Hultqvist et al [24]. 

http://www.ijrar.org/


© 2017 IJRAR July 2017, Volume 4, Issue 3                                     www.ijrar.org  (E-ISSN 2348-1269, P- 
ISSN 2349-5138) 

IJRAR19D1238 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 637 
 

 

 

 

3.2 Temperature 

Profile – 

Fig 2:   p against  x Fig 3: p against x 

 

 

Figures 4 and 5 show the mean temperature Tm    for various values of n with fixed   . 

The increase in mean 

temperature  Tm  with  n  shows that the temperature for  dilatants fluid is higher  than  Newtonian 

and pseudo plastic 

 

 

fluid.  Qualitatively,  the mean temperature  Tm    against  x  is similar  to that  of the temperature 

profile received  by 

 

 

Prasad et al. [21], the mean 

temperature Tm 

increase with q as per figure 5. From this it could be learnt 

that sliding 

 

 

temperature is higher than pure rolling. Further, it could be marked that the mean temperature 
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Tm when 0  refer to  the case without convection in Fig 4. 

The increase in n hints an increase in effective viscosity [25]. Figures 6 and 7 show the two 

dimensional temperature distribution in x and y plane.  is almost zero and at this cause the figure 

6 is drawn without  convection. Whereas, figure 7 has the absolute distribution of temperature with 

convection and conduction. 

 

 

  

Fig 4: Mean T against  x Fig 5: Mean T  against x 
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Fig 6:  T  against   ( x  &  y ) Fig 7: T against ( x & y ) 

3.3 Velocity Profile – 

For constant values of q and n, the velocity distribution at various values of x between x  

=-9 and  x =-0.6 is bestowed. Here, the velocity upsurges with y , as the figure 8, shows, and 

this is similar to the work by Lorenzo 

 

Fusi[26]. As shown in figure 3 the velocity remains fixed when pressure peak is x =-0.6. The 

complete distribution of velocity with convection and conduction is shown figure 9. 

 

 

 

Fig 8:   y against  u Fig 9: u against ( x 

& y ) 

3.4 Consistency Profile – 
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The lubricant consistency and its change in m with p and mean 

temperature Tm 

 

 

 

is the main subject 

of 

this article and it is clearly shown in the figures below. From figure 10 to 12, it is clear that the 

overall consistency 

changes with x for different n and different q and. It specifies the supremacy of pressure over the 

temperature for value below 0.1 and vice versa for  value 0.1 and above. So, the consistency 

variation with pressure and temperature is well justified [27,28]. 
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Fig 10:  m against  x Fig 11:  m against  x Fig 12: m against x 

 

3.5 Load and Traction – 

Here, the table 1 represents the eccentric features of bearings namely the load w and the 

traction force 

 

  

TF with different n and q values. Reading the table shows that 

both w and TF 

increase with n and this is 

correlation with the earlier findings stated in [29]. Figures 13 to 15 denote load, traction, 

coefficient of traction against x and figure 16 shows the traction fore against normal load Wy . 
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Fig 13:  w against  x Fig 14:  TF   against x 
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Fig 15: Co-

efficient of TF 

against  x Fig 16: 

TF 

against w 

 

Table -1 Load and Traction 

 

n/ m0 q=-

0.09 

q=-

0.05 

q=0.00 q=0.0

5 

q=0.0

9 

x1  values 

1.15/0.

56 

0.457

460 

0.484

745 

0.520866 0.5587

01 

0.590

000 

1.00/0.

75 

0.477

936 

0.506

334 

0.543404 0.5826

58 

0.615

506 

0.545/

86.0 

0.529

518 

0.562

186 

0.610295 0.6670

80 

0.702

344 

0.40/1

28.0 

0.596

048 

0.625

888 

0.665662 0.7149

49 

0.749

860 

x2  values 

1.15/0.

56 

0.637

460 

0.584

745 

0.520866 0.458

701 

0.410

000 

1.00/0.

75 

0.657

936 

0.606

334 

0.543404 0.482

658 

0.435

506 
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0.545/

86.0 

0.709

518 

0.662

186 

0.610295 0.567

080 

0.522

344 

0.40/1

28.0 

0.776

048 

0.725

888 

0.665662 0.614

949 

0.569

860 

Normal load 

1.15/0.

56 

0.728

287 

0.697

383 

0.661080 0.626

262 

0.599

713 

1.00/0.

75 

0.211

555 

0.206

124 

0.199348 0.192

612 

0.187

270 

0.545/

86.0 

0.233

583 

0.234

338 

0.235542 0.237

062 

0.236

323 

0.40/1

28.0 

0.085

741 

0.086

481 

0.087233 0.087

964 

0.088

366 

Traction 

1.15/0.

56 

2.116

632 

2.110

030 

2.096998 2.080

945 

2.066

434 

1.00/0.

75 

0.711

910 

0.714

393 

0.715818 0.715

251 

0.713

533 

0.545/

86.0 

1.013

203 

1.032

708 

1.052576 1.067

242 

1.080

937 

0.40/1

28.0 

0.402

739 

0.413

053 

0.424604 0.434

258 

0.441

572 

Coefficient of 

Traction 

1.15/0.

56 

2.906

316 

3.025

641 

3.172077 3.322

802 

3.445

702 

1.00/0.

75 

3.365

124 

3.465

844 

3.590789 3.713

430 

3.810

186 

0.545/

86.0 

4.337

666 

4.406

923 

4.468749 4.501

953 

4.573

987 

0.40/1 4.697 4.776 4.867469 4.936 4.997
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28.0 139 235 783 085 

 

 

IV. CONCLUSION 

The problem attempts to study the thermal effects in hydrodynamic lubrication of roller 

bearings using incompressible power law fluid under adiabatic boundaries. The Reynolds and the 

thermal energy equations which 
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are functions of consistency m and u and the consistency index n are obtained and solved semi 

analytically for pressure p and the mean temperature Tm . The following are the inferences: 

(i) The pressure increases significantly with n and  . 

(ii) The sliding temperature is higher when compared to pure rolling. 

(iii) The temperature is subjected to bring down the load carrying capacity of the system.. 

(iv) The load and traction rises with ‘n’ and q. 

(v) The traction at lower surface is more because of high speed at lower surface than the upper 

surface. 

(vi) The velocity of the lower surface is high resulting in the move of the velocity profile above the 

x- axis. 

(vii) The mean film temperature upsurges considerably with n and  . So it is mandatory to treat 

the consistency m 

of the power law fluid to differ with temperature and pressure. 

(viii) In the inlet domain, the effect of the peclet (  ) 

number is more. REFERENCES 
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